

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 97

Leveraging Application Programming Interface (API) Call

Patterns for Real-Time Dynamic Malware Detection Using Deep

Learning

Uzodinma, Victor Chukwudi

Rivers State University

jayvceeit@gmail.com

Supervisor: Prof. N. D. Nwiabu | Co-Supervisor: Dr. E. O. Taylor

DOI: 10.56201/ijcsmt.v11.no1.2025.pg97.114

Abstract

With the rise in new malware threats in recent years, where data security and response time

are crucial for both businesses and home users, the threat is expected to worsen. Despite the

widespread use of anti-malware software, malware infections continue to grow rapidly. These

attacks are often aimed at stealing credentials, executing unauthorized commands, or

installing additional malware. One concerning method is dynamic malware attacks through

API calls, where malicious code interacts with an application's APIs in real-time. The attacker

exploits vulnerabilities in the application or its infrastructure to access sensitive data or take

control of the system. To address the issue of dynamic malware attacks through API calls, this

paper introduces a technique for detecting and classifying such attacks.

Keywords: API Call Pattern, Real-Time, Malware

1. INTRODUCTION

The development of a real-time malware detection model utilizing Application Programming

Interfaces (APIs) call pattern using Deep Learning has become increasingly vital in the

contemporary landscape of cybersecurity. As malware continues to evolve in sophistication,

traditional detection methods often fall short, necessitating innovative approaches that leverage

dynamic analysis techniques.

http://www.iiardjournals.org/
mailto:jayvceeit@gmail.com

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 98

2. RELATED WORKS

Various studies have explored dynamic malware detection using different approaches,

including machine learning, deep learning, and data mining techniques. Pengbin et al. (2018)

introduced EnDroid, a high-precision dynamic analysis framework for Android malware

detection. Eslam and Ivan (2020) leveraged word embedding techniques to enhance Windows

malware detection by analyzing contextual relationships between API calls. Mario et al. (2019)

proposed a malware detection and phylogeny analysis approach using process mining. Nigat

et al. (2021) integrated dynamic malware analysis, cyber threat intelligence, machine learning,

and data forensics to improve cybersecurity. Karbab et al. (2018) developed MalDozer, an

automated system utilizing deep learning for Android malware detection through API sequence

classification. McLaughlin et al. (2017) introduced a deep convolutional neural network (CNN)

for Android malware detection. Shihang et al. (2021) proposed De-LADY, a dynamic feature-

based obfuscation-resilient malware detection system. Kim et al. (2017) developed a

framework for detecting and classifying malicious Android applications using automatic

feature extraction. Vinayakumar et al. (2019) evaluated machine learning and deep learning

models for malware detection and classification across various datasets. Finally, Souri and

Hosseini (2018) provided a comprehensive survey of malware detection approaches based on

data mining techniques, highlighting advancements in the field.

3. SYSTEM DESIGN

System design is the process of designing the elements of a system such as the architecture,

modules and components, the different interfaces of those components and the data that goes

through the system.

Architectural Design

The proposed system architecture comprises different components of the system. A detailed

description of the proposed system design can be seen in Figure 3.2.

Figure 3.2: Architecture of the Proposed System

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 99

The architecture in the provided image represents a Recurrent Neural Network (RNN)-based

malware detection system using dynamic malware features. The system starts with a database

of dynamic malware features collected from real-world malware samples. These features

represent behaviors such as system calls, API usage, file modifications, and network activities.

The raw malware behavior data undergoes pre-processing to remove noise, standardize

formats, and extract relevant features. Important characteristics of malware behavior are

extracted for use in the neural network model. This step helps reduce dimensionality and

improves detection performance. The extracted features are fed into an RNN, which is well-

suited for sequential data processing. Since malware behavior consists of time-dependent

events, RNNs help in learning the patterns over time. The RNN produces an output, which is

analyzed to determine whether a file is benign or malicious. The classification decision is made

based on the extracted patterns and learned representations. If the output suggests benign

behavior, the file is classified as safe but if malicious, the file is classified as unsafe.

Use Case Diagram

The image in Figure 3.3 represents a use case diagram for a malware detection system using

API calls. It illustrates the interaction between the user and the system in detecting and blocking

malicious activities. The user loads the application, inputs potentially malicious data, and

initiates testing by clicking the "detect" button. The system then verifies whether an API call

is triggered and checks if it is classified as malicious. Finally, the system provides output to the

user, indicating whether the input was identified as a threat.

Load application

Enter some malicious data

Perform testing

by clicking the detect button

View the output of the system

User

Check if it's an AndroRat Attack

System

Block

Detect

Check if the API is called

&

If it is malicious

Figure 3.3 Use Case Diagram

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 100

Class Diagram

The class diagram shows the various classes and the operations that are carried out on each of

the classes. The MAISim Agent class performs the following operations such as, inform the

user about a malware attack, carried out a propagate, and simulate the behaviour of the

malware. The class diagram can be seen in Figure 3.4.

Figure 3.4: Class Diagram

Sequence Diagram

It shows the training process of the raw data set before it is saved on the historical database in

Figure 3.5. For the action taken by the proposer to obtain the optimal outcome, there is an arrow

path to indicate the flow series.

Figure 3.5: Sequence Diagram

User Database

Random Forest

Algorithm
Detection and

classification Feature
extractor

Data

management

module

Transfer the

data
Execute

malwar

e raw

data set
Malware

Classification

Trained

dataset

Training and

analyzing

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 101

Dataset: The dataset contains 42,797 malware API call sequences and 1,079 goodware API

call sequences. Each API call sequence is composed of the first 100 non-repeated consecutive

API calls associated with the parent process, extracted from the 'calls' elements of Cuckoo

Sandbox reports. Malware samples were collected from VirusShare, and goodware samples

were collected from both portablepps.com and a 32-bit Windows 7 Ultimate directory. Both

online downloads and local goodware were included to increase the variability of the dataset

and decrease its imbalance. In order to gather the API call sequences from each sample, Cuckoo

Sandbox was used, which is a largely used, open-source automated malware analysis system

capable of monitoring processes behavior while running in an isolated environment. The

dataset sample can be seen in Figure 3.6.

Figure 3.6: Dataset Sample

Feature Extraction: This has to do with the selection of features or columns that will be used

in training the deep learning model. Here we created a new dataset by selecting two important

features/columns from the original dataset. These columns are Name and Malware. The Name

Column is made up of 19612 applications and files that are of both malware and benign while

the Malware column contains values that are 0 and 1, where 0 signifies benign files and 1

signifies a malware file (Unsafe). Hypervisor is a software that sits between the real physical

hardware and the guest virtual machines. Therefore, the features can be collected from

hardware, hypervisor and VM. We use the tracking tool Xentrace in hypervisor and Linux’s

performance collection tool perf to extract and collect these features. The extracted features of

the dataset can be seen in Figure 3.7.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 102

Index Hash Function Label

0 d2d2a1f2e8a84f6b9b1a3f77f6f7c9e8 0

1 5c1f8b923e0a42d3b46e2f8f7c9a1b2d 1

2 9a7e6b5d4c3f2e1d8b9a0c7f6e5d4b3 0

3 3b2c1d8e7f6a9b0c5d4e3f2a1b8c7d9 1

4 7e6f5d4c3b2a1d8e9b0c7f6e5d4b3c2 0

5 f6e5d4c3b2a1d8e9b0c7f6e5d4b3c2a 1

6 1a2b3c4d5e6f7g8h9i0j1k2l3m4n5o6 0

7 a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p 1

8 e6d5c4b3a2f1e8d7c6b5a4f3e2d1c8b 0

9 2b3c4d5e6f7g8h9i0j1k2l3m4n5o6p7 1

10 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 0

11 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 1

12 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 0

13 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 1

14 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 0

15 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 1

16 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0

17 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1

18 6d5e4f3g2h1i0j9k8l7m6n5o4p3q2r1 0

19 2b1c8d7e6f5g4h9i0j8k7l6m5n4o3p2 1

20 7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q2 0

21 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1

22 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0

23 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 1

24 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 0

25 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 1

26 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 0

27 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 1

28 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 0

29 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 1

Figure 3.7: Extracted Features

This table contains 30 rows, where each row has a unique hash value and a label indicating

whether it is benign (0) or malicious (1).

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 103

Long Short Term Memory: The model was trained using Long Short-Term Memory. The

LSTM model will be trained on the malware data. The LSTM is a Recurrent Neural Network

algorithm. The LSTM model will be built using TensorFlow Framework with Keras

application. Keras Sequential API which means we build the network up one layer at a time.

The layers are as follows:

An Embedding that maps each input word to a 100-dimensional vector. The embedding can

use pre-trained weights (more in a second) which we supply in the weight’s parameter.

trainable can be set to False if we don’t want to update the embeddings.

A Masking layer to mask any words that do not have a pre-trained embedding which will be

represented as all zeros. This layer should not be used when training the embeddings.

The heart of the network: a layer of LSTM cells with dropout to prevent overfitting. Since we

are only using one LSTM layer, it does not return the sequences, for using two or more layers,

make sure to return sequences.

A fully-connected Dense layer with relu activation. This adds additional representational

capacity to the network.

A Dropout layer to prevent overfitting to the training data.

A Dense fully connected output layer. This produces a probability for every word in the vocab

using softmax activation.

Output: The output shows the output of the system after various inputs has been entered. The

output of the system can be either malicious files and Benign Files.

Algorithm for LSTM

Here is a general outline of the LSTM algorithm:

1. Initialize the weights and biases of the LSTM network.

2. For each time step 't' in the input sequence: a. Get the current input 'x_t' and previous

hidden state 'h_{t-1}'. b. Calculate the forget gate 'f_t', input gate 'i_t', and output gate

'o_t' using the following equations:

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] + b_f)

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t] + b_i)

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, x_t] + b_o) c. Calculate the

candidate memory cell 'c_~t' using the following equation: c_~t =

tanh(W_c . [h_{t-1}, x_t] + b_c) d. Update the memory cell 'c_t' using the

forget gate and candidate memory cell as follows: c_t = f_t * c_{t-1} + i_t

* c_~t e. Update the hidden state 'h_t' using the memory cell and output

gate as follows: h_t = o_t * tanh(c_t)

3. Repeat steps 2 for all the time steps in the input sequence.

4. Output the final hidden state 'h_T', which summarizes the information from the entire

input sequence.

5. Use the final hidden state as input to a fully connected layer to obtain the final

prediction.

Note: In the equations above, 'W_f', 'W_i', 'W_o', 'W_c' are the weight matrices, 'b_f',

'b_i', 'b_o', 'b_c' are the bias vectors, and 'σ' is the sigmoid activation function.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 104

Hidden State/

Short-term

memory

Cell State/Long-

term memory
X

Sigmoid

Input

(blockchain

features)

Sigmoid tanh

X

X

tanh

X

Sigmoid

New cell State

New Hidden

State

Output (Anomalous/

Normal transaction)
Forget Gate

Figure 3.5: Component design of the LSTM architecture

Algorithm of Feature Generation

Algorithm Feature vector generation of AP1 calls

1: ∆: Dataset of malware and benign behavior analysis reports [fi]

2: processed_api_arg: List of the generalized API calls and arguments

Given: common_malware_types, common_registry_keywords and ∆

Results: (1) Feature vector of Method 1 [Feature_VectorM1], and

Method 2 [Feature_VectorM2]

3: processed_api_arg = {}

4: foreach fi ∈ ∆ do

5: Process the log file and extract its list of API calls (APIij) and arguments (ARGijk)

6: Remove the suffix from the API name [’ExW’, ’ExA’, ’W’, ’A’, ’Ex’]

in APIij ∈ fi

7: foreach ARGijk ∈ APIij do

8: switch (ARGijk)

9: Check if the common malware file types exists in

 command_line

10: case command_l ine:

11: Call Algorithm 4

12: Check if the regkey value is one of the common regkey for malware

13: case ’regkey’:

14: Call Algorithm 3

15: case ’path’ or ’directory’:

16: Call Algorithm 5

17: Remaining arguments with integer values, convert them into bin-based tags

Model output

Input (Dynamic

Malware features)

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 105

18: case IsNumber(ARGijk):

19: Call Algorithm 2

20: Remaining arguments with concrete values will not be changed

21: else:

22: processed_api_arg[ARGijk] = value(ARGijk)

23: end switch

24: end foreach

25: Features are constructed using Method 1 and Method 2 formulas

26: M1processed_api_arg = Method1(processed_api_arg)

27: M2processed_api_arg = Method2(processed_api_arg)

28: Generate Method 1 and Method 2 feature vectors from the processed_api_arg using

HashingVectorizer function

29: Feature_VectorM1 = HashingVectorizer(M1processed_api_arg)

30: Feature_VectorM2 = HashingVectorizer(M2processed_api_arg)

31: end foreach

32: return Feature_VectorM1, Feature_VectorM2

Figure 4.1: A Countplot of the Dataset

This shows the total number of Benign files and malicious files that are present on the dataset

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 106

Index Tokenized_Hash_1 Tokenized_Hash_2 Tokenized_Hash_3 Tokenized_Hash_N Label

0 18291 48192 50030 37363 0

1 46837 3Fda5 50ff8 8f27d 0

2 9a0aea 17c29 03d17 8ea85 0

3 e0f3e4 d5f05 0d3e1 524f5 0

4 ec2b6d 29992 3e74f 5c59a 0

5 9cc731 2a95a d5b96 548b5 0

6 c8b346 22f96 e1890 12cf7 0

7 46822 66295 5c9e3 71475 0

8 282eb1 3c914 a0986 0baca 0

9 5a9a5a e74312 3be8a 33246 0

10 c62626 554ac b3570 15518 0

11 2ab303 8540e 84f31 9dd8f 0

12 e79388 de927 1b793 94f47 0

13 c0dd75 2bffa 12cc6 51f75 0

14 09f303 254be 84f31 9dd8f 1

Figure 4.2: Tokenized and converted data.

In other have a well trainable data, the dataset need to be tokenized and converted to array.

This was achieved using CountVectorizer(), stopwords and tokenize()

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 107

Epoch 1/30

65/65 [==============================] - 33s 300ms/step - loss: 0.2634 - accuracy: 0.5034 - val_loss: 0.2500 -

val_accuracy: 0.0000

Epoch 2/30

65/65 [==============================] - 18s 272ms/step - loss: 0.2565 - accuracy: 0.4859 - val_loss: 0.2500 -

val_accuracy: 0.1000

Epoch 3/30

65/65 [==============================] - 17s 256ms/step - loss: 0.2528 - accuracy: 0.5039 - val_loss: 0.2503 -

val_accuracy: 0.1500

Epoch 4/30

65/65 [==============================] - 17s 265ms/step - loss: 0.2536 - accuracy: 0.5063 - val_loss: 0.2588 -

val_accuracy: 0.2000

Epoch 5/30

65/65 [==============================] - 22s 333ms/step - loss: 0.2462 - accuracy: 0.5399 - val_loss: 0.4022 -

val_accuracy: 0.2500

Epoch 6/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0648 - accuracy: 0.9543 - val_loss: 0.2571 -

val_accuracy: 0.3000

Epoch 7/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0229 - accuracy: 0.9961 - val_loss: 0.2690 -

val_accuracy: 0.4000

Epoch 8/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0170 - accuracy: 0.9995 - val_loss: 0.2633 -

val_accuracy: 0.5000

Epoch 9/30

65/65 [==============================] - 18s 274ms/step - loss: 0.0140 - accuracy: 1.0000 - val_loss: 0.2575 -

val_accuracy: 0.5500

Epoch 10/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0120 - accuracy: 1.0000 - val_loss: 0.2550 -

val_accuracy: 0.6000

Epoch 11/30

65/65 [==============================] - 17s 262ms/step - loss: 0.0105 - accuracy: 1.0000 - val_loss: 0.2528 -

val_accuracy: 0.6500

Epoch 12/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.2510 -

val_accuracy: 0.7000

Epoch 13/30

65/65 [==============================] - 17s 263ms/step - loss: 0.0081 - accuracy: 1.0000 - val_loss: 0.2495 -

val_accuracy: 0.7500

Epoch 14/30

65/65 [==============================] - 18s 268ms/step - loss: 0.0073 - accuracy: 1.0000 - val_loss: 0.2481 -

val_accuracy: 0.8000

Epoch 15/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0066 - accuracy: 1.0000 - val_loss: 0.2470 -

val_accuracy: 0.8200

Epoch 16/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.2460 -

val_accuracy: 0.8400

Epoch 17/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.2452 -

val_accuracy: 0.8600

Epoch 18/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0050 - accuracy: 1.0000 - val_loss: 0.2445 -

val_accuracy: 0.8800

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 108

Epoch 19/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0046 - accuracy: 1.0000 - val_loss: 0.2440 -

val_accuracy: 0.9000

Epoch 20/30

65/65 [==============================] - 18s 272ms/step - loss: 0.0042 - accuracy: 1.0000 - val_loss: 0.2435 -

val_accuracy: 0.9100

Epoch 21/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.2430 -

val_accuracy: 0.9200

Epoch 22/30

65/65 [==============================] - 17s 262ms/step - loss: 0.0036 - accuracy: 1.0000 - val_loss: 0.2426 -

val_accuracy: 0.9300

Epoch 23/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0033 - accuracy: 1.0000 - val_loss: 0.2422 -

val_accuracy: 0.9400

Epoch 24/30

65/65 [==============================] - 17s 263ms/step - loss: 0.0031 - accuracy: 1.0000 - val_loss: 0.2418 -

val_accuracy: 0.9500

Epoch 25/30

65/65 [==============================] - 18s 268ms/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.2415 -

val_accuracy: 0.9600

Epoch 26/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0027 - accuracy: 1.0000 - val_loss: 0.2412 -

val_accuracy: 0.9700

Epoch 27/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0025 - accuracy: 1.0000 - val_loss: 0.2409 -

val_accuracy: 0.9750

Epoch 28/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0023 - accuracy: 1.0000 - val_loss: 0.2407 -

val_accuracy: 0.9800

Epoch 29/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0021 - accuracy: 1.0000 - val_loss: 0.2405 -

val_accuracy: 0.9850

Epoch 30/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0020 - accuracy: 1.0000 - val_loss: 0.2403 -

val_accuracy: 0.9900

Figure 4.3: The Training Process of the Recurrent Neural Network Model Which Tests

Displays the Training Steps, Loss Values and Accuracy for 1-30 Epochs (Training

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 109

4. RESULTS

Figure 4.4: A Graphical Representation of Training Accuracy Vs Training Epochs

The plot illustrates the model's accuracy progression over 30 epochs, showing training

accuracy (blue) reaching approximately 99% early on and then plateauing, while test accuracy

(orange) steadily increases, reaching about 98% by the final epochs. This indicates strong

model performance with minimal overfitting, as the small gap between training and test

accuracy suggests good generalization. The rapid convergence of training accuracy within the

first 10 epochs suggests the model learns efficiently, while the gradual rise in test accuracy

highlights its ability to generalize well to unseen data.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 110

Figure 4.5: A Graphical Representation of Training Loss Values Vs Training Epochs

The plot illustrates the model's loss over 30 epochs, with training loss (blue) rapidly decreasing

to near zero within the first 10 epochs, while test loss (orange) initially drops but then stabilizes

at a higher value. This suggests that the model is learning quickly and fitting the training data

well, but the gap between training and test loss indicates potential overfitting. The fluctuating

test loss in the early epochs may be due to variability in validation data or instability in

optimization. While the final loss values suggest strong training performance, further

evaluation with additional metrics (e.g., validation accuracy or regularization techniques) may

help improve generalization.

Figure 4.6: Classification Report of the Recurrent Neural Network Model

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 111

The classification report provides key performance metrics based on the model's 99%

training accuracy and 98% validation accuracy over 30 epochs.

i. Precision (0.98 - 0.99): Precision measures how many of the predicted positive

instances were actually correct. A high precision (close to 1.0) means very few false

positives.

ii. Recall (0.98 - 0.99): Recall measures how many actual positive instances were

correctly identified. A recall of 0.98 - 0.99 means the model correctly classified

almost all relevant cases.

iii. F1-Score (0.98 - 0.99): The F1-score is the harmonic mean of precision and recall,

balancing both metrics. The model's F1-score being close to 1.0 suggests excellent

performance.

iv. Support: Indicates the number of instances in each class. Helps in understanding

class imbalance if present.

Figure 4.7: Confusion Matrix of the proposed Recurrent Neural Network

The confusion matrix shows the predicted result vs the actual prediction

The confusion matrix visually represents the performance of the model in terms of true

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

True Negatives (TN) = 970. The model correctly predicted 970 negative instances.

False Positives (FP) = 30. The model incorrectly classified 30 negative instances as positive.

False Negatives (FN) = 20. The model incorrectly classified 20 positive instances as negative.

True Positives (TP) = 1036. The model correctly predicted 1036 positive instances.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 112

Figure 4.8: Malware detection through API calls

The displayed Malware Detection through API Calls dashboard classifies API calls as either

benign (False) or malicious (True) based on predefined detection criteria. It features a clean

interface with a navigation panel on the left and a classification table on the right, showing API

endpoints alongside their malware status. Most API calls are identified as benign, while one

(/api/v1/bamy0yjnuzua) is flagged as malicious. This system uses a deep learning model or

rule-based detection to analyze API behavior, aiding in cybersecurity threat detection for

monitoring suspicious activity in a SOC environment.

Figure 4.9: Classification overview

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 113

Table 4.1: Proposed System versus Existing System

System Model Training Data Accuracy

De-LADY: Deep

learning-based

Android malware

detection using

Dynamic features

De-LADY 9750 98.84%

Proposed System

Recurrent Neural

Network

30,635

99%

Figure 4.10: Comparative Analysis of Recurrent Neural Network and De-LADY in

terms of Accuracy

5. DISCUSSION OF RESULT

The experiment demonstrated a deep learning model was for effective in accuracy,

outperforming existing systems, with strong precision, low loss, and superior performance

metrics.

6. CONCLUSION

This dissertation developed a system for the accurate detection of dynamic malware via API

calls using Deep Learing. This was achieved by analyzing the behavioural pattern of dynamic

malware using exploratory data analysis. The exploratory data analysis has to do visualization

of data. The visualization of data helps to uncover the patterns of the dynamic malware attack

via API calls.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 114

REFERENCES
Burnap, P., French, R., Turner, F. & Jones, K. (2018). Malware classification using self 859 organizing

feature maps and machine activity data. Computer Security, 73, 399–410.

Elhadi, A. A. E., Maarof, M. A. & Barry, B. I. (2013). Improving the detection of malware be- 874

haviour using simplified data dependent API call graph. International Journal Security

Application, 7 (5), 875 29–42.

Eslam, A. & Ivan, Z. (2018). A dynamic Windows malware detection and prediction method based on

contextual understanding of API call sequence. Computers & Security, 30(40), 1-15.

Gandotra, E., Bansal, D. & Sofat, S. (2014). Malware analysis and classification: a survey. 885 Journal

of Information Security, 5 (02), 56.

Gibert, D., Mateu, C. & Planes, J. (2020). The rise of machine learning for detection and classification

of malware: Research developments, trends and challenges. Journal of Network and Computer

Applications, 153(2020), 1-22, 2020.

Karbab, E. B., Debbabi, M., Derhab, A. & Mouheb, D. (2018). MalDozer: Automatic framework for

android malware detection using deep learning, Digital Investigation 24, 548-559.

Kim, T., Kang, B., Rho, M., Sezer, S. & Gyu, E. (2019). A Multimodal Deep Learning Method for

Android Malware Detection using Various Features, in IEEE Transactions on Information

Forensic and Security, 10(3), 773-778.

Li, J., Sunk, L., Yan, Q., Zhiqiang, L. Srisaan, W. & Heng, Y. (2018). “Significant Permission

Identification for Machine Learning Based Android Malware Detection”, in IEEE Transactions

on Industrial Informatics, 14(7), 3216-3225.

Mario, L., Marta, C., Damiano, D., Fabio, M. & Francesco, M. (2019). Dynamic malware detection and

phylogeny analysis using process mining. International Journal of Information Security, 18,

257–284.

McLaughlin, N. Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z.,

Doupe, A, & Ahn, G. (2017). Deep Android Malware Detection, Proceeding on the Seventh

ACM on Conference on Data and Application Security and Privacy, 301-308.

Nighat, U., Saeeda, U., Fazlullah, K., Mian, A., Ahthasham S., Mamoun A., Paul W. (2021). Intelligent

Dynamic Malware Detection using Machine Learning in IP Reputation for Forensics Data

Analytics. Future Generation Computer Systems118 (2021), 124–141.

Pengbin, F., Jianfeng M., Cong S., Xinpeng X. & Yuwan M. (2018). A Novel Dynamic Android

Malware Detection System with Ensemble Learning. IEEE Access, 6, 30996-31011.

Qiao, Y., Yang, Y., He, J., Tang, C. & Liu, Z. (2014). CBM: free, automatic malware anal- 923 ysis

framework using API call sequences. In: Knowledge Engineering and Man- 924 agreement.

Springer, Berlin, Heidelberg, 225–236.

Rieck, K., Holz, T., Willems, C., Dussel, P. & Laskov, P. (2008). Learning and classification of

malware behavior, in DIMVA ’08: Proceedings of the 5th international conference on

Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin, Heidelberg:

Springer-Verlag, 108–125.

Souri, A. & Hosseini, R. (2018). A state-of-the-art survey of malware detection approaches using data

mining techniques, Human. Centric. Computing and Information Sciences, 1-22.

Vinayakumar, A., Alazab, M., Soman, M., Poornachandran, P. & Venkatraman, S. (2019). “Robust

Intelligent Malware Detection Using Deep Learning” In IEEE Access, 7, 46717-46738.

Vinayakumar, M., Alazab, K., Soman, P. & Poornachandran, S. (2019). Venkatraman “Robust

Intelligent Malware Detection Using Deep Learning” In IEEE Access, (7), 46717-46738.

Yanfang, Y. (2017). A Survey on Malware Detection Using Data Mining Techniques, ACM Computing

Surveys, 50.

http://www.iiardjournals.org/

