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Abstract 

With the rise in new malware threats in recent years, where data security and response time 

are crucial for both businesses and home users, the threat is expected to worsen. Despite the 

widespread use of anti-malware software, malware infections continue to grow rapidly. These 

attacks are often aimed at stealing credentials, executing unauthorized commands, or 

installing additional malware. One concerning method is dynamic malware attacks through 

API calls, where malicious code interacts with an application's APIs in real-time. The attacker 

exploits vulnerabilities in the application or its infrastructure to access sensitive data or take 

control of the system. To address the issue of dynamic malware attacks through API calls, this 

paper introduces a technique for detecting and classifying such attacks.  
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1.  INTRODUCTION 

The development of a real-time malware detection model utilizing Application Programming 

Interfaces (APIs) call pattern using Deep Learning has become increasingly vital in the 

contemporary landscape of cybersecurity. As malware continues to evolve in sophistication, 

traditional detection methods often fall short, necessitating innovative approaches that leverage 

dynamic analysis techniques.  

 

http://www.iiardjournals.org/
mailto:jayvceeit@gmail.com


 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.1 2025 www.iiardjournals.org  

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 98 

2. RELATED WORKS 

Various studies have explored dynamic malware detection using different approaches, 

including machine learning, deep learning, and data mining techniques. Pengbin et al. (2018) 

introduced EnDroid, a high-precision dynamic analysis framework for Android malware 

detection. Eslam and Ivan (2020) leveraged word embedding techniques to enhance Windows 

malware detection by analyzing contextual relationships between API calls. Mario et al. (2019) 

proposed a malware detection and phylogeny analysis approach using process mining. Nigat 

et al. (2021) integrated dynamic malware analysis, cyber threat intelligence, machine learning, 

and data forensics to improve cybersecurity. Karbab et al. (2018) developed MalDozer, an 

automated system utilizing deep learning for Android malware detection through API sequence 

classification. McLaughlin et al. (2017) introduced a deep convolutional neural network (CNN) 

for Android malware detection. Shihang et al. (2021) proposed De-LADY, a dynamic feature-

based obfuscation-resilient malware detection system. Kim et al. (2017) developed a 

framework for detecting and classifying malicious Android applications using automatic 

feature extraction. Vinayakumar et al. (2019) evaluated machine learning and deep learning 

models for malware detection and classification across various datasets. Finally, Souri and 

Hosseini (2018) provided a comprehensive survey of malware detection approaches based on 

data mining techniques, highlighting advancements in the field. 
 

3. SYSTEM DESIGN 

System design is the process of designing the elements of a system such as the architecture, 

modules and components, the different interfaces of those components and the data that goes 

through the system. 

 

Architectural Design 

The proposed system architecture comprises different components of the system. A detailed 

description of the proposed system design can be seen in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Architecture of the Proposed System 
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The architecture in the provided image represents a Recurrent Neural Network (RNN)-based 

malware detection system using dynamic malware features. The system starts with a database 

of dynamic malware features collected from real-world malware samples. These features 

represent behaviors such as system calls, API usage, file modifications, and network activities. 

The raw malware behavior data undergoes pre-processing to remove noise, standardize 

formats, and extract relevant features. Important characteristics of malware behavior are 

extracted for use in the neural network model. This step helps reduce dimensionality and 

improves detection performance. The extracted features are fed into an RNN, which is well-

suited for sequential data processing. Since malware behavior consists of time-dependent 

events, RNNs help in learning the patterns over time. The RNN produces an output, which is 

analyzed to determine whether a file is benign or malicious. The classification decision is made 

based on the extracted patterns and learned representations. If the output suggests benign 

behavior, the file is classified as safe but if malicious, the file is classified as unsafe. 

Use Case Diagram 

The image in Figure 3.3 represents a use case diagram for a malware detection system using 

API calls. It illustrates the interaction between the user and the system in detecting and blocking 

malicious activities. The user loads the application, inputs potentially malicious data, and 

initiates testing by clicking the "detect" button. The system then verifies whether an API call 

is triggered and checks if it is classified as malicious. Finally, the system provides output to the 

user, indicating whether the input was identified as a threat.  
   

Load application

Enter some malicious data

Perform testing

by clicking the detect button

View the output of the system

User

Check if it's an AndroRat Attack

System

Block

Detect

Check if the API is called 

&
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Figure 3.3 Use Case Diagram 
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Class Diagram 

The class diagram shows the various classes and the operations that are carried out on each of 

the classes. The MAISim Agent class performs the following operations such as, inform the 

user about a malware attack, carried out a propagate, and simulate the behaviour of the 

malware. The class diagram can be seen in Figure 3.4. 

 
Figure 3.4: Class Diagram 

Sequence Diagram 

It shows the training process of the raw data set before it is saved on the historical database in 

Figure 3.5. For the action taken by the proposer to obtain the optimal outcome, there is an arrow 

path to indicate the flow series. 

 

 

   

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.5:  Sequence Diagram 
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Dataset: The dataset contains 42,797 malware API call sequences and 1,079 goodware API 

call sequences. Each API call sequence is composed of the first 100 non-repeated consecutive 

API calls associated with the parent process, extracted from the 'calls' elements of Cuckoo 

Sandbox reports. Malware samples were collected from VirusShare, and goodware samples 

were collected from both portablepps.com and a 32-bit Windows 7 Ultimate directory. Both 

online downloads and local goodware were included to increase the variability of the dataset 

and decrease its imbalance. In order to gather the API call sequences from each sample, Cuckoo 

Sandbox was used, which is a largely used, open-source automated malware analysis system 

capable of monitoring processes behavior while running in an isolated environment. The 

dataset sample can be seen in Figure 3.6. 

 

 

   

 

 

 

 

 

Figure 3.6: Dataset Sample 

Feature Extraction: This has to do with the selection of features or columns that will be used 

in training the deep learning model. Here we created a new dataset by selecting two important 

features/columns from the original dataset. These columns are Name and Malware. The Name 

Column is made up of 19612 applications and files that are of both malware and benign while 

the Malware column contains values that are 0 and 1, where 0 signifies benign files and 1 

signifies a malware file (Unsafe). Hypervisor is a software that sits between the real physical 

hardware and the guest virtual machines. Therefore, the features can be collected from 

hardware, hypervisor and VM. We use the tracking tool Xentrace in hypervisor and Linux’s 

performance collection tool perf to extract and collect these features. The extracted features of 

the dataset can be seen in Figure 3.7.  
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Index Hash Function Label 

0 d2d2a1f2e8a84f6b9b1a3f77f6f7c9e8 0 

1 5c1f8b923e0a42d3b46e2f8f7c9a1b2d 1 

2 9a7e6b5d4c3f2e1d8b9a0c7f6e5d4b3 0 

3 3b2c1d8e7f6a9b0c5d4e3f2a1b8c7d9 1 

4 7e6f5d4c3b2a1d8e9b0c7f6e5d4b3c2 0 

5 f6e5d4c3b2a1d8e9b0c7f6e5d4b3c2a 1 

6 1a2b3c4d5e6f7g8h9i0j1k2l3m4n5o6 0 

7 a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p 1 

8 e6d5c4b3a2f1e8d7c6b5a4f3e2d1c8b 0 

9 2b3c4d5e6f7g8h9i0j1k2l3m4n5o6p7 1 

10 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 0 

11 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 1 

12 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 0 

13 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 1 

14 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 0 

15 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 1 

16 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0 

17 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1 

18 6d5e4f3g2h1i0j9k8l7m6n5o4p3q2r1 0 

19 2b1c8d7e6f5g4h9i0j8k7l6m5n4o3p2 1 

20 7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q2 0 

21 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1 

22 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0 

23 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 1 

24 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 0 

25 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 1 

26 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 0 

27 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 1 

28 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 0 

29 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 1 

Figure 3.7: Extracted Features 

This table contains 30 rows, where each row has a unique hash value and a label indicating 

whether it is benign (0) or malicious (1). 
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Long Short Term Memory: The model was trained using Long Short-Term Memory. The 

LSTM model will be trained on the malware data. The LSTM is a Recurrent Neural Network 

algorithm. The LSTM model will be built using TensorFlow Framework with Keras 

application. Keras Sequential API which means we build the network up one layer at a time. 

The layers are as follows: 

An Embedding that maps each input word to a 100-dimensional vector. The embedding can 

use pre-trained weights (more in a second) which we supply in the weight’s parameter. 

trainable can be set to False if we don’t want to update the embeddings. 

A Masking layer to mask any words that do not have a pre-trained embedding which will be 

represented as all zeros. This layer should not be used when training the embeddings. 

The heart of the network: a layer of LSTM cells with dropout to prevent overfitting. Since we 

are only using one LSTM layer, it does not return the sequences, for using two or more layers, 

make sure to return sequences. 

A fully-connected Dense layer with relu activation. This adds additional representational 

capacity to the network. 

A Dropout layer to prevent overfitting to the training data. 

A Dense fully connected output layer. This produces a probability for every word in the vocab 

using softmax activation. 

Output: The output shows the output of the system after various inputs has been entered. The 

output of the system can be either malicious files and Benign Files. 

 

Algorithm for LSTM 

Here is a general outline of the LSTM algorithm: 

1. Initialize the weights and biases of the LSTM network. 

2. For each time step 't' in the input sequence: a. Get the current input 'x_t' and previous 

hidden state 'h_{t-1}'. b. Calculate the forget gate 'f_t', input gate 'i_t', and output gate 

'o_t' using the following equations:  

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] + b_f)  

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t] + b_i)  

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, x_t] + b_o) c. Calculate the 

candidate memory cell 'c_~t' using the following equation: c_~t = 

tanh(W_c . [h_{t-1}, x_t] + b_c) d. Update the memory cell 'c_t' using the 

forget gate and candidate memory cell as follows: c_t = f_t * c_{t-1} + i_t 

* c_~t e. Update the hidden state 'h_t' using the memory cell and output 

gate as follows: h_t = o_t * tanh(c_t) 

3. Repeat steps 2 for all the time steps in the input sequence. 

4. Output the final hidden state 'h_T', which summarizes the information from the entire 

input sequence. 

5. Use the final hidden state as input to a fully connected layer to obtain the final 

prediction. 

Note: In the equations above, 'W_f', 'W_i', 'W_o', 'W_c' are the weight matrices, 'b_f', 

'b_i', 'b_o', 'b_c' are the bias vectors, and 'σ' is the sigmoid activation function. 
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Figure 3.5: Component design of the LSTM architecture 

 

 

Algorithm of Feature Generation 

Algorithm Feature vector generation of AP1 calls 

 

1:    ∆: Dataset of malware and benign behavior analysis reports [fi]  

2:    processed_api_arg: List of the generalized API calls and arguments 

Given: common_malware_types, common_registry_keywords and ∆ 

Results:       (1) Feature vector of Method 1 [Feature_VectorM1], and 

Method 2 [Feature_VectorM2] 

3:   processed_api_arg = {} 

4:   foreach fi ∈ ∆ do 

5:  Process the log file and extract its list of API calls (APIij) and arguments (ARGijk) 

6: Remove the suffix from the API name [’ExW’, ’ExA’, ’W’, ’A’, ’Ex’] 

in APIij ∈ fi 

7:  foreach ARGijk ∈ APIij do 

8:  switch (ARGijk) 

9:  Check if the common malware file types exists in 

      command_line 

10: case command_l ine: 

11: Call Algorithm 4 

12: Check if the regkey value is one of the common regkey for malware 

13: case ’regkey’: 

14: Call Algorithm 3 

15: case ’path’ or ’directory’: 

16: Call Algorithm 5 

17: Remaining arguments with integer values, convert them into bin-based tags 

Model output 

Input (Dynamic 

Malware features) 
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18: case IsNumber(ARGijk): 

19: Call Algorithm 2 

20: Remaining arguments with concrete values will not be changed 

21: else: 

22: processed_api_arg[ARGijk] = value(ARGijk) 

23: end switch 

24: end foreach 

25: Features are constructed using Method 1 and Method 2 formulas 

26: M1processed_api_arg = Method1(processed_api_arg) 

27: M2processed_api_arg = Method2(processed_api_arg) 

28: Generate Method 1 and Method 2 feature vectors from the processed_api_arg using                     

HashingVectorizer function 

29: Feature_VectorM1 = HashingVectorizer(M1processed_api_arg) 

30: Feature_VectorM2 = HashingVectorizer(M2processed_api_arg) 

31: end foreach 

32: return Feature_VectorM1, Feature_VectorM2 
 

 

 
Figure 4.1: A Countplot of the Dataset 

This shows the total number of Benign files and malicious files that are present on the dataset 
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Index Tokenized_Hash_1 Tokenized_Hash_2 Tokenized_Hash_3 Tokenized_Hash_N Label 

0 18291 48192 50030 37363 0 

1 46837 3Fda5 50ff8 8f27d 0 

2 9a0aea 17c29 03d17 8ea85 0 

3 e0f3e4 d5f05 0d3e1 524f5 0 

4 ec2b6d 29992 3e74f 5c59a 0 

5 9cc731 2a95a d5b96 548b5 0 

6 c8b346 22f96 e1890 12cf7 0 

7 46822 66295 5c9e3 71475 0 

8 282eb1 3c914 a0986 0baca 0 

9 5a9a5a e74312 3be8a 33246 0 

10 c62626 554ac b3570 15518 0 

11 2ab303 8540e 84f31 9dd8f 0 

12 e79388 de927 1b793 94f47 0 

13 c0dd75 2bffa 12cc6 51f75 0 

14 09f303 254be 84f31 9dd8f 1 

 

Figure 4.2: Tokenized and converted data. 

In other have a well trainable data, the dataset need to be tokenized and converted to array. 

This was achieved using CountVectorizer(), stopwords and tokenize() 
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Epoch 1/30 

65/65 [==============================] - 33s 300ms/step - loss: 0.2634 - accuracy: 0.5034 - val_loss: 0.2500 - 

val_accuracy: 0.0000 

Epoch 2/30 

65/65 [==============================] - 18s 272ms/step - loss: 0.2565 - accuracy: 0.4859 - val_loss: 0.2500 - 

val_accuracy: 0.1000 

Epoch 3/30 

65/65 [==============================] - 17s 256ms/step - loss: 0.2528 - accuracy: 0.5039 - val_loss: 0.2503 - 

val_accuracy: 0.1500 

Epoch 4/30 

65/65 [==============================] - 17s 265ms/step - loss: 0.2536 - accuracy: 0.5063 - val_loss: 0.2588 - 

val_accuracy: 0.2000 

Epoch 5/30 

65/65 [==============================] - 22s 333ms/step - loss: 0.2462 - accuracy: 0.5399 - val_loss: 0.4022 - 

val_accuracy: 0.2500 

Epoch 6/30 

65/65 [==============================] - 17s 266ms/step - loss: 0.0648 - accuracy: 0.9543 - val_loss: 0.2571 - 

val_accuracy: 0.3000 

Epoch 7/30 

65/65 [==============================] - 17s 268ms/step - loss: 0.0229 - accuracy: 0.9961 - val_loss: 0.2690 - 

val_accuracy: 0.4000 

Epoch 8/30 

65/65 [==============================] - 17s 264ms/step - loss: 0.0170 - accuracy: 0.9995 - val_loss: 0.2633 - 

val_accuracy: 0.5000 

Epoch 9/30 

65/65 [==============================] - 18s 274ms/step - loss: 0.0140 - accuracy: 1.0000 - val_loss: 0.2575 - 

val_accuracy: 0.5500 

Epoch 10/30 

65/65 [==============================] - 18s 270ms/step - loss: 0.0120 - accuracy: 1.0000 - val_loss: 0.2550 - 

val_accuracy: 0.6000 

Epoch 11/30 

65/65 [==============================] - 17s 262ms/step - loss: 0.0105 - accuracy: 1.0000 - val_loss: 0.2528 - 

val_accuracy: 0.6500 

Epoch 12/30 

65/65 [==============================] - 17s 265ms/step - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.2510 - 

val_accuracy: 0.7000 

Epoch 13/30 

65/65 [==============================] - 17s 263ms/step - loss: 0.0081 - accuracy: 1.0000 - val_loss: 0.2495 - 

val_accuracy: 0.7500 

Epoch 14/30 

65/65 [==============================] - 18s 268ms/step - loss: 0.0073 - accuracy: 1.0000 - val_loss: 0.2481 - 

val_accuracy: 0.8000 

Epoch 15/30 

65/65 [==============================] - 17s 266ms/step - loss: 0.0066 - accuracy: 1.0000 - val_loss: 0.2470 - 

val_accuracy: 0.8200 

Epoch 16/30 

65/65 [==============================] - 17s 265ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.2460 - 

val_accuracy: 0.8400 

Epoch 17/30 

65/65 [==============================] - 17s 264ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.2452 - 

val_accuracy: 0.8600 

Epoch 18/30 

65/65 [==============================] - 17s 268ms/step - loss: 0.0050 - accuracy: 1.0000 - val_loss: 0.2445 - 

val_accuracy: 0.8800 
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Epoch 19/30 

65/65 [==============================] - 18s 270ms/step - loss: 0.0046 - accuracy: 1.0000 - val_loss: 0.2440 - 

val_accuracy: 0.9000 

Epoch 20/30 

65/65 [==============================] - 18s 272ms/step - loss: 0.0042 - accuracy: 1.0000 - val_loss: 0.2435 - 

val_accuracy: 0.9100 

Epoch 21/30 

65/65 [==============================] - 18s 270ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.2430 - 

val_accuracy: 0.9200 

Epoch 22/30 

65/65 [==============================] - 17s 262ms/step - loss: 0.0036 - accuracy: 1.0000 - val_loss: 0.2426 - 

val_accuracy: 0.9300 

Epoch 23/30 

65/65 [==============================] - 17s 265ms/step - loss: 0.0033 - accuracy: 1.0000 - val_loss: 0.2422 - 

val_accuracy: 0.9400 

Epoch 24/30 

65/65 [==============================] - 17s 263ms/step - loss: 0.0031 - accuracy: 1.0000 - val_loss: 0.2418 - 

val_accuracy: 0.9500 

Epoch 25/30 

65/65 [==============================] - 18s 268ms/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.2415 - 

val_accuracy: 0.9600 

Epoch 26/30 

65/65 [==============================] - 17s 266ms/step - loss: 0.0027 - accuracy: 1.0000 - val_loss: 0.2412 - 

val_accuracy: 0.9700 

Epoch 27/30 

65/65 [==============================] - 17s 265ms/step - loss: 0.0025 - accuracy: 1.0000 - val_loss: 0.2409 - 

val_accuracy: 0.9750 

Epoch 28/30 

65/65 [==============================] - 17s 264ms/step - loss: 0.0023 - accuracy: 1.0000 - val_loss: 0.2407 - 

val_accuracy: 0.9800 

Epoch 29/30 

65/65 [==============================] - 17s 268ms/step - loss: 0.0021 - accuracy: 1.0000 - val_loss: 0.2405 - 

val_accuracy: 0.9850 

Epoch 30/30 

65/65 [==============================] - 18s 270ms/step - loss: 0.0020 - accuracy: 1.0000 - val_loss: 0.2403 - 

val_accuracy: 0.9900 

 

Figure 4.3: The Training Process of the Recurrent Neural Network Model Which Tests 

Displays the Training Steps, Loss Values and Accuracy for 1-30 Epochs (Training 
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4. RESULTS 

 
 

Figure 4.4: A Graphical Representation of Training Accuracy Vs Training Epochs 

The plot illustrates the model's accuracy progression over 30 epochs, showing training 

accuracy (blue) reaching approximately 99% early on and then plateauing, while test accuracy 

(orange) steadily increases, reaching about 98% by the final epochs. This indicates strong 

model performance with minimal overfitting, as the small gap between training and test 

accuracy suggests good generalization. The rapid convergence of training accuracy within the 

first 10 epochs suggests the model learns efficiently, while the gradual rise in test accuracy 

highlights its ability to generalize well to unseen data. 
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Figure 4.5: A Graphical Representation of Training Loss Values Vs Training Epochs 

The plot illustrates the model's loss over 30 epochs, with training loss (blue) rapidly decreasing 

to near zero within the first 10 epochs, while test loss (orange) initially drops but then stabilizes 

at a higher value. This suggests that the model is learning quickly and fitting the training data 

well, but the gap between training and test loss indicates potential overfitting. The fluctuating 

test loss in the early epochs may be due to variability in validation data or instability in 

optimization. While the final loss values suggest strong training performance, further 

evaluation with additional metrics (e.g., validation accuracy or regularization techniques) may 

help improve generalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Classification Report of the Recurrent Neural Network Model 
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The classification report provides key performance metrics based on the model's 99% 

training accuracy and 98% validation accuracy over 30 epochs. 

i. Precision (0.98 - 0.99): Precision measures how many of the predicted positive 

instances were actually correct. A high precision (close to 1.0) means very few false 

positives. 

ii. Recall (0.98 - 0.99): Recall measures how many actual positive instances were 

correctly identified. A recall of 0.98 - 0.99 means the model correctly classified 

almost all relevant cases. 

iii. F1-Score (0.98 - 0.99): The F1-score is the harmonic mean of precision and recall, 

balancing both metrics. The model's F1-score being close to 1.0 suggests excellent 

performance. 

iv. Support: Indicates the number of instances in each class. Helps in understanding 

class imbalance if present. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Confusion Matrix of the proposed Recurrent Neural Network 

The confusion matrix shows the predicted result vs the actual prediction 

The confusion matrix visually represents the performance of the model in terms of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

True Negatives (TN) = 970. The model correctly predicted 970 negative instances. 

False Positives (FP) = 30. The model incorrectly classified 30 negative instances as positive. 

False Negatives (FN) = 20. The model incorrectly classified 20 positive instances as negative. 

True Positives (TP) = 1036. The model correctly predicted 1036 positive instances. 
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Figure 4.8: Malware detection through API calls 

The displayed Malware Detection through API Calls dashboard classifies API calls as either 

benign (False) or malicious (True) based on predefined detection criteria. It features a clean 

interface with a navigation panel on the left and a classification table on the right, showing API 

endpoints alongside their malware status. Most API calls are identified as benign, while one 

(/api/v1/bamy0yjnuzua) is flagged as malicious. This system uses a deep learning model or 

rule-based detection to analyze API behavior, aiding in cybersecurity threat detection for 

monitoring suspicious activity in a SOC environment. 

 

 
Figure 4.9: Classification overview 
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Table 4.1: Proposed System versus Existing System 

System Model Training Data Accuracy 

De-LADY: Deep 

learning-based 

Android malware 

detection using 

Dynamic features 

De-LADY 9750 98.84% 

 

Proposed System 

 

Recurrent Neural 

Network 

 

30,635 

 

99% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Comparative Analysis of Recurrent Neural Network and De-LADY in 

terms of Accuracy 
 

5. DISCUSSION OF RESULT 

The experiment demonstrated a deep learning model was for effective in accuracy, 

outperforming existing systems, with strong precision, low loss, and superior performance 

metrics. 
 

6. CONCLUSION 

This dissertation developed a system for the accurate detection of dynamic malware via API 

calls using Deep Learing. This was achieved by analyzing the behavioural pattern of dynamic 

malware using exploratory data analysis. The exploratory data analysis has to do visualization 

of data. The visualization of data helps to uncover the patterns of the dynamic malware attack 

via API calls. 
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